DOCSIS DS & US Speed Playbook

Top Reasons CMs are not Getting Expected Speed and CMTS Monitoring

John J. Downey
CMTS Technical Leader

Cisco Systems
jdowney@cisco.com
Agenda

- Troubleshooting 101
- OSI Model
- JD’s 10 Rules for Capacity Planning
- 10 Points to Ponder
- Factors that Affect Data Throughput & Per-CM Speeds
- Increasing Access Speed & Performance Improvement
- Potential Issues & Closing Points
Troubleshooting 101

Seven Layer OSI model & mnemonic

- 7 = Application
- 6 = Presentation
- 5 = Session
- 4 = Transport
- 3 = Network
- 2 = Data
- 1 = Physical

all people seem to need data packets away pizza sausage throw not do please

- **Start at layer 1 !!!!!**
OSI Model & Geek Haiku

Faulty Layer 1
But, check Layer 2 before
Layers 3 and 4

- It’s no fun; with faulty Layer 1
 - Dropped packets (physical layer issues)
 - Testing through wireless, VPN, GigE limitations

- Don’t be blue; proceed to Layer 2

- It’s hard to see; past Layer 3
 - Traffic generator

- But don’t ignore, Layer 4
 - TCP vs UDP
Layer 1

- Understanding MER (SNR), CNR, correctable & uncorr FEC
- Modem levels and ranging
- T3 & T4 timeouts
- Flaplist - Modem Diagnostics Log (MDL)
- Ping vs DOCSIS ping
- US spectrum monitoring
- Proactive Network Maintenance (PNM)
- Wideband capture - DS spectrum
Layer 1 (cont) - Verify CM & Service Flow States

- Registered in D2.0 mode (online vs w-online)
- Partial mode (p-online vs w-online)
 - New 1x1 Battery & Energy Management modes
- Service flow not using proper BG
 - Service flow state and forwarding interface
- Monitor CMTS and other potential bottlenecks
 - Supervisor and linecard CPU & memory
Layers 2 Through 4

- **Layer 2**
 - Ethernet frame size (64-1522B) 2000 for D3.1
 - DOCSIS overhead, more than you would expect
 - Powerboost adds a “wrinkle”

- **Layer 3**
 - IPV4 or 6
 - Layer 3 vs layer 2 reporting

- **Layer 4**
 - TCP vs UDP
 - US speed limitation
 - OTT Video

- **Utilization verification**
 - Single CM speed vs multiple modems/flows
 - Trying to get linerate
JD’s 10 Rules for Capacity Planning

1. Configured speed = 1.1 x Marketed speed
 – Layer 3 vs layer 2 reporting
 – Minimum 1.05 multiplication factor

2. DS:US = 10:1
 – Account for US acks from DS TCP (ex: OTT video)
 – 20:1 minimum initially
 – Possibly as low as 30:1

3. Powerboost for median tiers
 – 5, 10, 15 Mbps
 – US Powerboost possible as well

4. Powerboost for high tiers to bypass rule 1
 – Be sure peak rate TLV used

5. Avg frame size = 768B, but most traffic 64 & 1518B frames
JD’s 10 Rules (cont)

6. Aggregate speed = 2 x highest offering

7. Oversubscription is fuzzy math
 – Aggregate is 2x; use 25-50:1
 – Aggregate is 4x; use 50-100:1
 – Aggregate is 10x; use 100:1

8. SG size = 1 DS x 2 US connectors
 – HHP per SG depends on DSs/SG, but USs could become limit

9. Monitor actual utilization
 – Powerboost skews decision for node splits
 – QoE required – D3.0 CM FTP feature (banana pie?)

10. Control “abusers” and prioritize some flows
 – DPI, byte counting with STM
 – Higher priority for gaming, video, call signaling, CM registration
10 Points to Ponder

1. Many speed sites report at layer 3 of OSI model
 – Configure cm file for 5-10% higher than marketed

2. No control over actual frame size (64-1518 B)
 – Frame size overhead 18/64 (28%) vs 18/1518 (1.2%)
 – MTU affected by wireless, VPN,

3. Small frames = small DOCSIS pipes
 – Only 35 Mbps when all frames are DS VoIP of 229 B

4. PowerBoost™ can give perception of greater speed
 – Could cause issues when deciding to do node splits
 – How to control peak rate
PowerboostTM

- Name trademarked by Comcast
 - Other cable companies may call it by a different name

- Simple manipulation of when to rate-limit CM

- Need very large DS max burst setting in CM file
 - IE. 5 MB vs default of 3044 B
 - Trace could appear oscillating slightly up and down

- D3.0 CMs support TLV for per-CM peak rates

- Can also apply US Powerboost
DS Powerboost

- Depiction of DS Powerboost utilizing D3.1 capacity
- CM file with
 - 510 Mbps max rate, 600 Mbps peak rate, and 70 MB DS max burst
- Approximately 6 sec Powerboost achieved
US Powerboost

- Depiction of US Powerboost
- CM file with
 - 10 Mbps max rate, 15 Mbps peak rate, and 2 MB US max traffic burst
- Approximately 3 sec Powerboost achieved
10 Points to Ponder (cont)

5. DS TCP requires US acks (typical sawtooth response)
 – US pipe could slow down DS speed tests
 – Small US acks make US pipe worth less
 • DOCSIS overhead usually 11 B per frame
 • 10.24 Mbps raw = 9 Mbps usable, but only 7.5 with acks!

6. More frames = more PPS = higher CPU usage
 – At some point CPU in modem could (will) be bottleneck
 – TCP (typically 2 DS per 1 US ack)

7. During congestion, you still want priority for VoIP signaling, maybe video acks, and CM registration

8. Load balancing is good, but what speed tier pushes customer to bonding?
 – Maybe >50% of linerate
10 Points to Ponder (cont)

9. Netflix/Hulu TV are using ABR, which is TCP-based
 - Will cause US traffic in form of acks
 - New CMs may have ack suppression on by default
 - Typical US to DS TCP ratio of ~2%
 - With ack suppression, that can drop below 1%
 - Ack suppression doesn’t alleviate CM CPU
 - DS IP video of 3-7 Mbps may make ack suppression inefficient

10. Many tweaks needed to get per-CM US speeds > 3 Mbps
 - Lots of concatenation leads to fragmentation
 - Fragmentation adds headers
 - Preamble & gaurdtime added to each fragment
 - D3.0 US bonding can do concatenation and keep < 2000 B
 - May not require fragmentation, so less overhead
Downstream Speed Affected By:

- Map & DOCSIS Overhead
- Frame size or MTU affects usable rate
 - VPN, wireless, …
- Modem
 - Config file, CPU (PPS), & Ethernet
- Transport layer
 - TCP or UDP
 - Upstream speeds & TCP windowing effect
- Max DS Burst - perception is reality
 - Powerboost
- Computer OS and Windows® stack
Upstream Speed Affected By:

- Rate Limit, Congestion, Dropped Frames & Older CMs
- DOCSIS Protocol – Req/Grant cycle
- Downstream Map Advance
 - DS modulation & interleaving, map advance safety, CM time offsets, US bonding, SCDMA, M-CMTS (CIN)
- Concatenation
 - Max concat & traffic burst settings
- Fragmentation
- Modulation Profiles and Channel Width
 - Bigger “Pipe” = more aggregate speed
 - Packet serialization time (per-CM speed)
Modem Throughput

- **Downstream using 256-QAM**
 - \(5.36 \text{ Msym/s} \times 8 \text{ b/sym} = 42.88 \text{ Mbps} - \sim 13\% \text{ overhead} \approx 37 \text{ Mbps}\)
 - 400 CMs downloading data at same time = 92 kbps
 - Typical DS oversell of 1:100 = 1% peak usage = 9.2 Mbps
 - Single customer could theoretically get 37 Mbps
 - US "acks" must be transmitted when doing TCP
 - Other bottlenecks become apparent; CM, PC, USB, wireless, ..

- **Upstream using 16-QAM**
 - \(3.2 \text{ MHz} = 2.56 \text{ Msym/s}, \times 4 \text{ b/sym} = 10.24 \text{ Mbps} - \sim 11\% \text{ for phy layer} & \sim 2\% \text{ for maintenance} = 9 \text{ Mbps}\)
 - 100 customers/US Ch \approx 9 \text{ Mbps} shared = 90 kbps
 - Typical US oversell of 1:10 = 10% peak usage = 900 kbps
 - Single customer could theoretically get 9 Mbps
 - Request & Grant cycle limits it to \sim 3 \text{ Mbps}
Increasing Access Speed

• Decrease HHP per node or per CMTS US channel
 – Physical segmentation
 – Virtual segmentation with more freqs & load balancing

• Quality of service (QoS) provisioning w/ DOCSIS 1.1

• More compression, less overhead, TCP manipulation
 – H.265 & MPEG-4 video for DS
 – VoIP Codecs, UGS-AD
 – PHS (removed in D3.1)
 – Ack suppression
 – Concatenation, fragmentation, low latency queuing

• Increase aggregate speed with DOCSIS 2.0, 3.0, & 3.1
High Speed Recipe

- **Layer 1**
 - Full US/DS bonding and proper cm file settings
 - Wired connection(s)
 - No dropped or delayed segments, frames, packets

- **Layer 2**
 - 1518 to 2000B frames

- **Layer 3**
 - Verify IPV4 vs 6
 - Test with intended speed

- **Layer 4**
 - UDP traffic
 - May test TCP aggregate with multiple CMs or flows
Checklist

- Highest offering < ½ of aggregate
- Use PowerBoost judiciously
 - Use peak rate TLV
- Utilize CMTS features for robustness & “self-healing”
 - Load balance (2.0 & 3.0), RBGs, dynamic modulation, …
 - Place D3.1 PLC in best spectrum
- Manage fair use of network (DPI, shaping, STM/IPDR?)
- Monitor actual traffic load and usage
 - Large rolling time average can mask results
- Monitor modem states and service flows are correct
 - Partial mode, registered-traditional-docsis, etc.
- Use periodic speed test to prove no congestion
 - Newer CMs have built-in FTP functionality
Closing Points

- Understand theoretical rate before testing
 - Math & new designs are beginning steps

- Bigger pipes are more efficient
 - But doesn’t necessarily mean less latency
 - May need to “steer’ latency/jitter-sensitive services to smaller, subset bonding groups

- Determine when additional capacity necessary & how long to implement

- Different service tiers on different ch-capable CMs could necessitate new LB rules
 - Don’t move if traffic < 20% or > 60% of aggregate

- Don’t assume DOCSIS is your only bottleneck
 - WAN, TCP, CPU, memory, ..
Closing Points (cont)

- Be aware of potential ingress sources and spectrum locations
 - “Ounce of prevention is worth a pound of cure”
 - Place D3.1 PLC in best spectrum

- Re-access US & DS spectrum for plant issues and ingress
 - Test intended spectrum with intended modulation

- Be aware of laser clipping concerns & US temperature affects

- Fiber deep architectures & Remote-PHY allow higher speeds
 - HFC plant upgrade decisions = analysis-paralysis!

- Legacy devices will go through attrition leading to more efficiency
 - Drop SC-QAMs, add more OFDM on DS, & allocate more OFDMA on US

- Utilize CMTS features for robustness & “self-healing”
 - Load balance (2.0 & 3.0), US and DS resiliency, dynamic modulation, …

- Future SDN of OFDM profile management will provide more flexibility
 - Utilization reporting will need to be addressed
Thank you.